DEPARTMENT OF STATISTICS Visva-Bharati University
 Probability \& Probability Dist. (Code: CC-3)

Internal Test: III
Date: 27/07/21 (Tuesday)

Attempt All Questions
Total Marks: 10

1. A random variable X has probability density function $f(x)=\alpha x e^{-\beta^{2} x^{2}}, x>0, \alpha>0, \beta>0$. If $E(X)=\frac{\sqrt{\pi}}{2}$, determine α and β.
2. If X_{1}, X_{2} are independent RVs. Then using MGF show that $X_{1} \sim \operatorname{Bin}\left(n_{1}, p\right), X_{2} \sim \operatorname{Bin}\left(n_{2}, p\right) \Rightarrow$ $X_{1}+X_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$.
3. Let X be a continuous random variable with the probability density function $f(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}},-\infty<$ $x<\infty$. Then $E(X)$ and $P(X>1)$, respectively, are
(A) 1 and $(1+e)^{-1}$. (B) 0 and $2(1+e)^{-2}$.
(C) 2 and $(2+2 e)^{-1}$. (D) 0 and $(1+e)^{-1}$.
